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Abstract

Purpose –With the development of global food markets, the structural properties of supply chain networks
have become key factors affecting the ability to evaluate and control infectious diseases and food
contamination. The purpose of this paper is to describe and characterize the nationwide pork supply chain
networks (PSCNs) in China and to demonstrate the potential of using social network analysis (SNA) methods
for accessing outbreaks of diseases and contaminations.
Design/methodology/approach – A large-scale PSCN with 17,582 nodes and 49,554 edges is constructed,
using the pork trade data collected by the National Important Products Traceability System (NIPTS) in China.
A network analysis is applied to investigate the static and dynamic characteristics of the annual network and
monthly networks. Then, themetric maximum spreading capacity (MSC) is proposed to quantify the spreading
capacity of farms and estimate the potential maximum epidemic size. The structure of the network with the
spatio-temporal pattern of the African swine fever (ASF) outbreak in China in 2018 was also analysed.
Findings – The results indicate that the out-degree distribution of farms approximately followed a power law.
The pork supplymarket in Chinawas active duringApril to July andDecember to January. TheMSC is capable of
estimating the potential maximum epidemic size of an outbreak, and the spreading of ASF was positively
correlated with the effective distance from the origin city infected by ASF, rather than the geographical distance.
Originality/value – Empirical research on PSCNs in China is scarce due to the lack of comprehensive supply
chain data. This study fills this gap by systematically examining the nationwide PSCN of China with large-
scale reliable empirical data. The usage of MSC and effective distance can inform the implementation of risk-
based control programmes for diseases and contaminations on PSCNs.
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1. Introduction
The supply chain system has developed rapidly in recent years and has changed from a
simple chain system to a complex network system with non-linear, large-scale and high-
dimensional features, as well as time and space scale characteristics (Lu and Shang,
2017; Osadchiy et al., 2016). Understanding the complexity of pork supply chain
network (PSCN) is a key factor to evaluate and control the spread of related infectious
diseases and food contaminations (Dub�e et al., 2008; N€oremark et al., 2011; B€uttner et al.,
2015; Rautureau et al., 2012; Lu et al., 2019; Kukielka et al., 2017). While animal
movement databases have been early established in European countries (Relun et al.,
2016) and the USA (Lee et al., 2017), little information is available on pig trade
transactions in China (Wu et al., 2016).

Trade data (or animal movements) can be analysed as a network structure (directed
or undirected and static or temporal), in which the firms (holdings) are treated as
“nodes” and trade transactions (movements) are regarded as “links” or contacts. In
recent decades, social network analysis methods have been increasingly used to
characterize the topology of various supply chain networks from both static and
dynamic aspects, in order to achieve a better understanding of spatio-temporal
dynamics of infectious diseases, to assess the risk of spreading and to predict and
prevent the transmission of infectious diseases and food contaminations (Webb, 2005;
Lentz et al., 2009, 2011; B€uttner et al., 2013, 2015; Kiss et al., 2006; Mart�ınez-L�opez et al.,
2009; Vernon and Keeling, 2012; Bajardi et al., 2011; Dub�e et al., 2008, 2009, 2011;
Volkova et al., 2010; Rautureau et al., 2012; Robinson et al., 2007; Bigras-Poulin et al.,
2007; Lebl et al., 2016; N€oremark et al., 2011; LeBlanc et al., 2015; Natale et al., 2009;
Volkova et al., 2010; Lu et al., 2019; Kukielka et al., 2017; Salines et al., 2017).

Most of the research studies were conducted in the countries of Europe and North
America, with very few empirical investigations in China. For instance,Wang et al. developed
a modelling framework to examine the effect of market power on the food safety of the pork
industry in China by using data collected from a pork firm survey (Wang et al., 2019). Han
et al. investigated interfirm exchange relationships and food quality management in China’s
pork supply chain with the data from 229 pork processors in eastern China (Han et al., 2011).
Zhou et al. explored the role of live birdmarkets biosecurity indicators and poultrymovement
in the avian influenza A (H7N9) affected areas in China with the data from a cross-sectional
survey (Zhou et al., 2015). It is clear that studies in China have been focussed on theoretical
research from economic or managerial aspects due to the absence of data on comprehensive
food traceability systems.

China is the largest pork producer and consumer in the world (Shao et al., 2018); however,
empirical evidence informing the PSCN in the Chinese context is scarce and there is a large
research gap in this field. In recent years, spurred by food contamination scandals like
Shuanghui sausage involving clenbuterol in 2011 and the outbreak of African swine fever
(ASF) in 2018 (Wang et al., 2018), food safety is becoming one of China’s largest social
concerns and has attracted global attention (The Lancet, 2012). A better understanding of the
PSCN in China is required to inform the implementation of food safety improvement and
disease control.

Based on the above considerations, this paper analysed the topology of a large-scale
national PSCN in China and the spread ofASF outbreak in 2018. In the analysis, the static and
dynamic structures of the PSCNwere characterized, themetrics of maximum spread capacity
(MSC) and maximum infection chain were proposed to quantify the epidemic size and
infection risk of an outbreak of a disease or contamination. Finally, the spatio-temporal
pattern of the ASF outbreak in China was investigated.

The structure of the paper is organized as follows. Section 2 reviews the extant literature
on studies on PSCNs in different countries. Section 3 introduces the data source and network

IMDS
120,8

1484



analysis methods. In Section 4, the results are presented. The conclusions and future works
are discussed in Section 5.

2. Literature review
The development of animal movement databases and food traceability systems has
contributed a lot to the empirical investigations on the networks of cattle (Dub�e et al., 2008;
Vernon and Keeling, 2012; Lentz et al., 2009; Bajardi et al., 2011; Natale et al., 2009; Robinson
et al., 2007; Christley et al., 2005a, b), sheep (Webb, 2006; Kiss et al., 2006; Volkova et al., 2010)
and pig movements (Lentz et al., 2011; B€uttner et al., 2013, 2015; Lee et al., 2017; Relun et al.,
2016; Kukielka et al., 2017; Salines et al., 2017; Lebl et al., 2016). The social network analysis
(SNA) is becoming the methodology of choice to describe PSCN structures (Kim et al., 2011).
The major relevant studies in different countries are presented in Table 1. In European
countries like Sweden, France and Germany, livestock movements are mandatorily
registered to ensure traceability, which allows scientists to characterize the structural
patterns of trade networks in the livestock industry. In the USA, multisite systems are also
established to provide animal movement data. However, in some developing countries such
as Georgia (Kukielka et al., 2017) and China (Ji et al., 2012), data collection is generally limited
such that small-scale data are often obtained by questionnaires or simulations in studies.

In the field of epidemiology, the SNA also has been used to identify potential
superspreaders or superreceivers of diseases that may affect swine as well as other
livestock species. A number of network measures are used to investigate the potential spread
of infectious diseases, such as degree measures (Christley et al., 2005a, b) and components
(Kao et al., 2006; B€uttner et al., 2013). The infection chain is also used to estimate the potential
maximum epidemic size of an outbreak (N€oremark et al., 2011; B€uttner et al., 2015; Rautureau
et al., 2012). The infection chain of one farm is defined as the number of farms that are directly
and indirectly connected to the farm through animal movements, with the consideration of
time order of the movements (Dub�e et al., 2008). In addition, Lebl et al. demonstrated that the

Country Data Node type Nodes Edges Estimation metrics Reference

Sweden National data
(2006–2008)

Nucleus or
multiplier; sow
pool; farrow to
grow; farrow to
finish and
fattening

2,506–
2,977

18,138–
20,807

In-degree; out-
degree; ingoing
infection chain and
outgoing infection
chain

N€oremark
et al., (2011)

France National data
(2010.01–
2010.06)

Breeding; farrow-
to-grow; farrow-to-
finish; growing;
grow-to-finish and
finishing herd

13,968 155,154 Degree,
betweenness and
ingoing infection
chain

Rautureau
et al., (2012)

Germany A producer
community
(2006–2009)

Multiplier;
farrowing farm;
farrow-to-finishing
farm; finishing
farm and abattoir

483 926 Weakly connected
components;
strongly connected
components; out-
degree and outgoing
infection chain

B€uttner
et al., (2013)

The USA One multisite
system
(2012–2014)

Sow farm; gilt
development unit;
boar stud; nursery;
wean-to-finish and
finishing farm

500 109,868 Centrality measures Lee et al.,
(2017) Table 1.

Studies on pork supply
chain networks in
different countries
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network activity is an important factor in evaluating the effects of a disease spread in the
German pig trade network (Lebl et al., 2016). Besides SNA methods, epidemiological models,
such as the susceptible–infected–recovered (SIR) model, are also used for assessing the
spread of infectious diseases in PSCNs (B€uttner et al., 2016; Lebl et al., 2016).

China is the biggest producer and consumer of pork (Shao et al., 2018), simultaneously,
food safety problems linked to pork products have been repeatedly reported (The Lancet,
2012). The outbreak of ASF in 2018 has also resulted in devastating economic impacts on the
pork market as well as on food safety issues. The current pork industry in China is
characterized by the dominant position of smallholding pig producers and slaughterhouses
(Han et al., 2011), and the structure of pig farmers is simple and non-professional, which is
different from that of European countries and the USA (see Table 1). The organization of such
a fragmented pork chain in China induces difficulties in tracking food contamination and
diseases (Wu et al., 2016).

To mitigate risk and improve food safety in China, studies on risk management, food
safety management systems, quality management and cost-effectiveness are conducted with
theoretical models, simulations and questionnaires (Han et al., 2011; Yu et al., 2013; Ji et al.,
2012). However, very few studies have presented an empirical analysis of real-world PSCNs
due to the difficulties in data collection. Our study on the national PSCN in China based on
large-scale reliable empirical data fills these gaps.We present an empirical study on the use of
SNA methods for large-scale PSCN analysis in China, to quantify the structural
characteristics, to estimate the potential epidemic size of an outbreak and to investigate
the spatio-temporal spread pattern of ASF on the network.

3. Materials and methods
3.1 Data description
To improve food safety and promote the Chinese government’s “Internet and Agriculture
Act”, the National Important Products Traceability System (NIPTS), a national food
traceability system in China, was initiated under the instructions of the State Council andwas
constructed by the ChineseMinistry of Commerce in 2014. To examine the effectiveness of the
NIPTS, 58 pilot cities divided into five batches were involved in the system in different time
periods. A pilot city is a city selected by the Chinese Ministry of Commerce to be one of the
first to be involved in the NIPTS. The NIPTS covers a wide diversity of products, such as
meat, vegetables, Chinese medicinal crops, wine, etc., and the System involves more than
13,500 corporations and 200,000 shops and contains billions of transaction records (Ministry
of Commerce of the People’s Republic of China, 2017).

We used the pork trade data from the first batch of ten pilot cities (Dalian, Qingdao,
Nanjing,Wuxi, Suzhou, Shanghai, Ningbo, Hangzhou, Chongqing, Chengdu andKunming) in
the NIPTS covering the period from 1 January 2015 to 31 December 2015. Most of the pilot
cities were located in eastern China, which is one of the most important pig production and
pork consumption regions in China. And Chengdu city is located in the largest pig production
province, Sichuan. The data contain detailed records of pig trade transactions from farms to
slaughterhouses (F → S) and pork trade transactions from slaughterhouses to retailers
(S → R). These transactions are daily recorded, and the data items include the date of
transaction, volume, price and other specific information. There are 6,686,175 pork
transactions between 17,582 supply chain participants in 254 cities, which allow us to
construct a large-scale nationwide PSCN in China.

3.2 Network construction
In China’s pork supply chain, there is a lack of a professional classification of pig farms, such
as core groups, breeding groups, etc. In the NIPTS, three major sections of China’s pork
supply chain are considered, i.e. upstream pig raising, midstream slaughtering and
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processing. Major pork supply chain participants include farms, slaughterhouses and
retailers. Pigs produced by different farms are processed by slaughterhouses then the pork in
slaughterhouses is delivered to retailers. Based on the trade data in the NIPTS, we thus used a
three-layer model to describe how products move from productions to consumptions in the
PSCN (Figure 1).

Setting participants as nodes and transactions as edges, we transformed trading data in
the NIPTS into a network. Representing the network as a directed graph,G5 (V, E), in which
V denotes the nodes and E denotes the set of edges. N5 jVj is the number of nodes in G and
M5 jEj represents the number of edges. Thereby, an annual network including N5 17, 582
nodes andM 5 49, 554 edges is constructed using the trade data in 2015. The weight of an
edge is counted by the sum of pork trade volume on this edge, i.e. between the pair of two
nodes. In addition, we used the daily transactions to construct temporal networks, in which
nodes and edges are added or removed by day. Hence, an edge in the temporal network can be
represented by triple variables (i, j, ti,j), where i and j denote the nodes and ti,j represents the
forming time of the transaction between i and j. We set the time window Δt5 one month to
slice the network, then the PSCN is separated into 12 monthly subnetworks.

3.3 The network analysis
A variety of global and local social network metrics are used to characterize the topology of
the annual network and 12 monthly networks. In addition, inspired by the definition of
infection chain (Dub�e et al., 2008), we propose the MSC as a new metric to quantify the
maximum spreading range of a farm and to estimate the potential maximum epidemic size of
an outbreak, we also use maximum infection chain to evaluate the risk of a retailer of being
infected. All metrics are introduced as follows.

At the network level, average degree indicates the average number of links for each node
connected within the network, calculated by < k > 5 (

P
ki=N). A higher average degree

implies increased interconnectivity amongst nodes (Freeman, 1978). Density is the proportion
of the links present M in comparison to the number of all possible links N (N�1)/2, which
ranges between 0 and 1 (Wasserman and Faust, 1994). Considering the network in this paper
is directed and has three layers, then the number of all possible links is calculated by
N13N2þN23N3, in whichNi (i5 1, 2, 3) represents the number of nodes in the layer i of the
network. Degree assortativity is a preference for a network’s nodes to attach to others that are
similar in some way and often operationalized as a correlation ranging between �1
(completely disassortative) and 1 (perfectly assortative) (Newman, 2002). Degree assortativity
is helpful to explore the cooperation pattern of supply chain firms, for example, an assortative
pattern to a certain extent indicates a situation of win–win cooperation. Network
centralization provides a value between 0 (if all nodes have the same connectivity in the
network) and 1 (if the network has a star topology), which explainswhether the network has a

Figure 1.
The three-layer pork
supply chain network

framework in the
empirical National

Important Products
Traceability
System data
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structural concentration trend (Kim et al., 2011). Network heterogeneity is the coefficient of
the variation in connectivity, a supply chain network with high-network heterogeneity
exhibits hub nodes that have a large number of contractual connections (Perera et al., 2017). A
weakly connected component (WCC) is a part of a network where all nodes are connected by
at least one path through the network, not taking the direction of the contact into account
(Kao et al., 2006). A strongly connected component (SCC) is a part of the network where all
nodes can reach each other through directed links, either directly or via other nodes (Kao
et al., 2006).

At the node level, in-degree (kini ) and out-degree (kouti ) denote the numbers of ingoing
(predecessor nodes) and outgoing edges (successor nodes), respectively, and measure how
well connected a node i is (Freeman, 1978). Betweenness centrality CBðiÞmeasures the extent
to which a node is located on paths between other nodes and is a measure of centrality in a
graph based on the shortest paths (Wasserman and Faust, 1994). In supply chain networks, a
firm with high-betweenness centrality indicates the higher importance of its influence on
product flows.

TheMSC defines the number of retailers that are indirectly connected to one farm through
pig and pork trade transactions, taking the sequential order of transactions into account. The
maximum infection chain (MIC) defines the number of firms (including farms and
slaughterhouses) that are directly or indirectly connected to one retailer through pig and
pork trade transactions, and it also takes the sequential order of transactions into account.

4. Results and discussion
4.1 Static topologic characteristics of the network
The annual PSCN is illustrated in Figure 2, noting that the coordinates of nodes are not
related to its geographical position. Table 2 shows the topological characteristics of the
annual network and 12 monthly networks. At the network level, the low network density
(0.0209) indicates that only 2.09% of possible edges were present in the annual network. The
PSCNwas found to be disassortative with negative degree assortativity, indicating that firms

Figure 2.
Visualization of the
pork supply chain
network with 17,582
nodes and 49,554 links,
using trading data for
the first batch of ten
pilot cities in the
National Important
Products Traceability
System in china from 1
january 2015 to 31
december 2015
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tend to connect to others with a degree different from themselves; similar results can be found
in the study by Perera et al. (2017). It also suggests that with hub nodes not connecting to each
other, the network could achieve resilience to the cascading impacts of food contamination or
disease transmission. The low-network centralization (0.12) indicates the widely distributed
and decentralized nature ofmodern PSCNs.Moreover, the high-network heterogeneity (10.14)
implies that the pork supply chain contains hub nodes and can realize centralized control
through very few firms. In addition, the PSCN had threeWCCs, with the largest one including
almost all firms (17,573 and 99.9%).

At the node level, since slaughterhouse is the only bridge between farm and retailer in the
PSCN, it is obvious that the slaughterhouses had non-zero average betweenness centrality
(0.000029). In addition, the slaughterhouses had on average 332.59 downstream partners (out-

Annual network Monthly networks mean (range)

Nodes
Farms 1,198 576 (497–632)
Slaughterhouses 136 124 (120–131)
Retailers 16,248 9,117 (7,877–11,546)

Edges
F → S links 4,322 1,356 (1,130–1,510)
S → R links 45,232 13,425 (8,702–29,060)
Average degree 5.64 2.92 (2.27–4.97)

Average in-degree
Farms 0 0
Slaughterhouses 31.78 10.87 (8.83–11.98)
Retailers 2.78 1.42 (1.08–2.52)

Average out-degree
Farms 3.61 2.35 (2.27–2.43)
Slaughterhouses 332.59 106.69 (71.33–225.27)
Retailers 0 0
Density 0.0209 0.0118 (0.0093–0.0195)

Degree assortativity
in-in �0.207 �0.265 (�0.413to �0.176)
in-out �0.091 �0.135 (�0.170 to �0.060)
out-in �0.290 �0.235 (�0.411–0.216)
out-out �0.243 �0.184 (�0.211 to �0.154)
Betweenness centrality 0.000029 0.0021 (0.0013–0.0025)

Weakly connected component
Number of WCC 3 7 (4–9)
Size of largest WCC 17,573 9,684 (8,414–12,167)
Size of second largest WCC 7 53 (25–70)

Strongly connected component
Number of SCC 17,582 9,818 (8,567–12,264)
Size of largest SCC 1 1
Size of second largest SCC 1 1
MSC of farms 789 (0–5,797) 312 (243–388)
MIC of retailers 61 (1–369) 21 (17–24)

Table 2.
Topological

characteristics of the
annual network and
12 monthly networks
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degree), which were nearly 100 times greater than the farms (3.61) and had on average 31.78
upstream partners (in-degree), which were 11 times greater than the retailers (2.78). It is
straightforward to conclude that the slaughterhouses should be continuously supervised as
they had higher risks for both spreading and getting infected by diseases or contaminations.
In comparison with the PSCNs in other countries, where the degree distributions of all firm
types was correctly skewed (N€oremark et al., 2011; B€uttner et al., 2013, 2015), in the PSCN of
China only the out-degree distribution of farms approximately followed a power law
(Figure 3), indicating that the spreading capacity is highly resilient towards random
quarantine of farms (Albert et al., 2000). However, with strategic removal of the most central
farms, e.g. by trade restrictions or selective vaccination or culling, a rapid fragmentation of
the trade network could be expected. From an epidemiological perspective, such a
fragmentation of the PSCN will be important to control a spread.

In the annual network, the MSC of all 1,198 farms ranged between 0 and 5,797, with an
average of 789. A farmwith the largestMSCwas indirectly connected to 5,797 retailers, which
took up 35.7% of the retailers throughout the whole PSCN. If this farm becomes the
contamination source, there is a high risk of probably infecting over a quarter of the retailers
in the network. The MIC of all 16,248 retailers ranged between 1 and 369, with an average of
61. Surveillance efforts should be focussed on the farms with large MSC and retailers with
large MIC, when an outbreak of diseases or contaminations is observed.

4.2 Dynamic characteristics of the network
4.2.1 Temporal dynamics of transactions. In comparison with the annual network, there were
9,818 (55.8%) firms active in the monthly networks with 14,781 (29.8%) edges. The variation
in the number of active nodes is shown in Figure 4, which indicates a seasonal pattern of the
pork supply market in China. The pork trading was significantly active between April and
July and inactive during Chinese New Year. In addition, the pork supply market was clearly
affected by summer vacation and festivals. The pork trade volume held a higher level on the
International Labour Day (May), summer vacation (July and August) and the National Day
(October). The numbers of farms, slaughterhouses and retailers all sharply decreased in
February, when people were celebrating the national holiday of the Spring Festival (Chinese
New Year), before which the pork preparation was done. The numbers of active farms and
slaughterhouses were also low in August and September as it was probably because people

Figure 3.
The in-degree and out-
degree distributions of
farms, slaughterhouses
and retailers in the
pork supply chain
network

IMDS
120,8

1490



usually purchased enough pork before August for summer vacation and for the celebration of
graduation ormatriculation. This result is similar to Ontario, in which shipments are found to
be less active in the summer months (Dub�e et al., 2008).

In comparison to the seasonal variation in livestock transactions in other countries, there
are some specific characteristics of the variation in China. First, a high proportion of farms
and slaughterhouses remained active in April. Second, there were two active trading periods:
(1) From April to July: Since the outbreak of an epidemic after last winter, pigs were in short
supply. The event of “black hoof pig” inMarch, where black-hoofed pigs with foot-and-mouth
disease entered circulation links, which made many qualified pigs unable to enter the market
for the strict control of government and companies. After this decline in pork consumption,
there appeared a great recovery in the beginning of April, which is similar to the findings on
the increase of transactions during spring in Italy (Natale et al., 2009), Sweden (N€oremark
et al., 2011) and Great Britain (Robinson et al., 2007). (2) December and January: Another
period of active trades occurred at the beginning and in the middle of winter, which is similar
to Great Britain (Christley et al., 2005b). However, as a comparison, there are also some
countries with no variation, such as Denmark (Bigras-Poulin et al., 2007) and Germany
(B€uttner et al., 2015), which were explained by planned pig production throughout the year or
incomplete pork trade data.

Figure 4.
Variation in the

numbers of active
(a) farms, (b)

slaughterhouses and
(c) retailers, as well as
(d) the weight of links
(or pork trade volume).
In (d), the above and
below lines represent

F→ S and S→R links,
respectively

Pork supply
chain networks

in China
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Figure 5.
Temporal properties of
(a) average degree
< d >, (b) average
betweenness centrality
< bc >, (c) average out-
degree of farms
< doutF >, (d) average
in-degree of retailers
< dinR >, (e) average
maximum spreading
capacity of farms
< MSC > and (f)
average maximum
infection chain of
retailers < MIC > for
the 12 monthly
networks
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4.2.2 Temporal characteristics of network properties.As shown in Figure 5, when the pork
trade volume reached a peak between April and July (as shown in Figure 4), the average
degree< d> reached an off-peak between April and September. The large pork trade volume
of firms that had a low average network degree indicates that many productive firms sold
large volumes of products to their trading partners. In contrast to < d >, the average
betweenness centrality<bc> reached a peak betweenApril andAugust, when the pork trade
volume reached its peak but the number of supply chain participants showed a decreasing
trend. With higher betweenness centrality between April and December, slaughterhouses
played an important role in connecting farms and retailers in the PSCNs, enabling the entire
pork trading network to operate efficiently.

Spearman’s rank correlation was performed to measure the relationships amongst pork
trade volume, pig price, pork price, < d > and < bc >. As shown in Table 3, a strong positive
correlation was found between pig/pork prices and < bc >, indicating that the supply chain
participants tended to develop new trading relationships when the price increases. A notable
negative correlation between < d > and < bc > indicates that with an increase in the number
of trading partners, a supply chain participant will have less influence on the trading flow
within the whole supply chain network and have difficulty in building a so-called bridge
between two trading components.

4.3 Estimating the potential epidemic size
From an epidemiological perspective, we used MIC to evaluate the risk for retailers of being
infected by diseases or contaminations. As shown in Figure 5, the in-degree of the retailers
< dinR >was not equivalent to the MIC, the values of < MIC >were about two times larger
than the values of< dinR >, indicating that there were retailers with limited direct contacts but
a large number of indirect contacts. The< MIC >showed a similar seasonal patternwith the
dynamics of the pork trade volume and the average betweenness centrality. A higher
< MIC > between April and July indicates that retailers have a higher risk of being infected
in these months than in other periods. Taking the indirect contacts and the chronological
order of trade transactions into account, the MIC could be used to support diseases or
contaminations control for risk-based surveillance, the retailers with high MIC receive many
contacts from other supply chain participants.

We used three categories of measures (components, out-degree and MSC) to estimate the
maximum potential epidemic size of an outbreak. The components measure uses the size of
the largest SCC as the lower bound of the maximum epidemic size and the size of the largest
WCC as the upper bound of the maximum epidemic size (Kao et al., 2006). The out-degree
measure uses the 99th percentile and the maximum of the out-degree to estimate the lower
and upper bounds of the potential maximum epidemic size, respectively. The MSC measure
estimates the lower bound of the potential maximum epidemic size with the 90th percentile of
the MSC and estimates the upper bound with the maximum value. These measures offer
straightforward quantification on the potential extent of contamination or disease at the

Coefficient Pork trade volume Pig price Pork price < d > < bc >

Pork trade volume 1
Pig price �0.076 1
Pork price 0.12 0.967** 1
< d > �0.427 �0.384 �0.537 1
< bc > 0.544 0.667* 0.817** �0.812** 1

Note(s): ** and * denote statistical significance at the 1% and 5% confidence levels, respectively

Table 3.
The correlation

between pig and pork
price, pork trade
volume, average

degree < d > and
average betweenness

centrality < bc >
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beginning of an investigation and can be used to guide decision-makers in the choice and
application of control measures.

The estimation results are shown in Table 4. The components measure provided identical
lower bound values in all months as no SCC was observed in 12 monthly networks. And the
components overestimated the upper (4–10 times higher) bound of maximum epidemic size
than that of MSC and out-degree. Similar results can be found in the studies by B€uttner et al.
(2015) and Dub�e et al. (2008). The MSC measure provided higher, lower and upper bounds of
potential maximum epidemic size than the out-degree measure. The estimates provided by
the MSC indicate that an outbreak of diseases or contaminations could infect 849–2,248 firms
in the PSCN. From a policy perspective, the estimates should be taken into consideration
when trying to determine the strength of control measures and control measures can be
adopted first in the farmswith the highMSC since they havemany contactswith other supply
chain participants. In addition, all these three estimation measures decrease from the
beginning to the end of the year, which indicates a decline in the spreading capacity of the
PSCN through the year.

4.4 Quantifying the outbreak of African swine fever
ASF has resulted in unprecedented disasters and challenges to the Chinese swine industry
(Wang et al., 2018). On August 3, 2018, China reported the first outbreak of ASF in Shenyang,
a northeastern city in Liaoning Province, China. By the end of 2018, the outbreaks have been
reported in 23 provinces and municipalities across China. Over 100 farms and
slaughterhouses in 97 cities were infected between 3 August 2018 and 20 December 2019
and more than 200,000 pigs were culled.

To quantify the transmission of ASF amongst Chinese cities, we constructed a directed
city network as shown in Figure 6, using the geographical location information of each firm in
the PSCN. There were 254 nodes (cities) and 712 directed edges (transactions between cities)
in the city network and 58 cities in the network were infected with ASF.We used the effective
distance proposed in the study by Brockmann and Helbing (2013) to describe these national
dynamics of ASF. Given the flux fraction 0≤Pij ≤ 1, i.e. the fraction of pork trade volume
leaving city j and arriving at city i through the directed city network, we defined the effective
distance dij from a city j to a connected city i as dij ¼ ð1− logPijÞ≥ 1. A small fraction of pork
trading volume j→ i is effectively equivalent to a large distance and vice versa. Based on the

Figure 6.
Contagion phenomena
of African swine fever
in China based on the

city network converted
from the pork supply
chain network with

geographical locations
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effective distance, dij, we define the effective distanceDij from an arbitrary reference node j to
another node in the directed city network by the length of the shortest path from j to i, as
follows: Dij ¼ min

Γ
λðΓÞ, where λðΓÞ is the sum of directed effective lengths along the legs of

the ordered path Γ ¼ n1; n2; . . . ; nm.
Figure 7 presents the correlation of epidemic arrival times TASF with effective distances

Deff and geographical distance Dg from the origin city on the basis of 2018 data on ASF in
China. Arrival time is defined as the date of the first ASF virus-confirmed case in a given city
after the initial outbreak on 3 August 2018. The origin city is the city where the first
confirmed case occurred. On a national scale, TASF weakly correlates with geographical
distance DgðR2 ¼ 0:19Þ. The ASF data exhibit a linear relationship ðR2 ¼ 0:73Þ between
arrival time and effective distance from the origin city, though there are only six available
samples of effective distance. Therefore, we consider that the spreading speed and arrival
times of ASF can be calculated through the effective distance if the network data are available
and complete. The transmission analysis results of effective distance are helpful for
governments to effectively control the transmission of ASF by blocking transports of live
pigs and pig products according to the PSCN structures. Also, for an outbreak of other
diseases or contaminations, control measures can be adopted in the firms connected to the
origin of the outbreak with short effective distances.

5. Conclusions
To characterize the topology structures and their connection to the risk of disease outbreak
and contamination, we constructed a directed three-layer (farms, slaughterhouses and
retailers) national PSCN including 17,582 nodes and 49,554 edges, using pig and pork trade
data extracted from the first ten pilot cities in the NIPTS in China in 2015.We investigated the
static and dynamic characteristics of the annual network and the 12 monthly networks and
proposed MSC to quantify the maximum spreading range of farms and to estimate the
potential maximum epidemic size of an outbreak. Another metric MIC was used to evaluate
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the risk of retailers of being infected. In addition, we analysed the spatio-temporal pattern of
the ASF outbreak in China in 2018 based on the structure of the network.

China is the largest pork producer and consumer in theworld; however, empirical studies on
the PSCN in China are still few and there is a large research gap in this field. In comparisonwith
the PSCNs in other countries, the PSCN in China shows distinct properties, e.g. large network
size, simple classifications of pig producers, etc. The proposed measures of MSC and MIC
integrate the spreading risk and supply chain structure and can be used to inform the
implementation of risk-based control programmes for diseases and contaminations on PSCNs.

As MSC is capable of assessing the risk of farms of spreading disease or contamination,
when the source is uncertain, control measures are suggested to be adopted in farms with
high MSC since they have many contacts with other supply chain participants through trade
transactions. In addition, the MSC provides the best estimates of the potential maximum
epidemic size of an outbreak in the PSCN of China, in comparison with the out-degree and
componentsmeasurements. TheMSC considers both the chronological order and the directed
nature of the contacts in the network; thus, it neither underestimates the maximum epidemic
size like out-degree nor overestimates the maximum epidemic size like WCCs.

By analysing the network structure and the dynamic of the ASF outbreak, a strong
positive correlation is found between the onset of ASF in each city and the effective distance
from this city to the origin city with the very first confirmed ASF case. This finding can
enable policymakers to understand complex contagion dynamics in the PSCN in China and
inform control strategies to reduce the final outbreak size. Combining the metrics MSC and
the effective distance, it is suggested that policymakers should strengthen quarantine
measures on firms with high MSC in areas with short effective distances to the original
outbreak place, in order to reduce the final epidemic size of an outbreak.

There are several practical implications for stakeholders in a food supply chain, e.g. farms,
slaughterhouses and retailers. Usually the processing site, in this case the slaughterhouse, is
connecting the producer and retailer and serving as hub nodes in the network. Therefore,
they are naturally associated with higher risks of being infected and of accelerating the
spread. For such sites, food safety compliance and food safety control should be seriously
improved and strengthened. For retailers, they can assess the risk of infection by calculating
MIC and then take appropriate precautions tominimize the effects of an outbreak. In addition,
the effective distance offers a novel tool for estimating the outbreak source; when the source is
known, this method can also be used to assess the risk of infection and to support the
designing of effective quarantine measures, such as cutting off trade along the most
risky path.

The present study made an important step in the study of nationwide PSCNs.
However, we only obtained pig and pork trade data in the first ten pilot cities in 2015,
though the NIPTS in China has expanded to 58 pilot cities later on. This data limitation
resulted in a partial picture of the nationwide PSCN in China and a limited sample size
of effective distances. In the future, we expect to obtain more recent and widely covered
NIPTS data to reveal a complete and clearer picture of the food supply chain networks
in China.

The following abbreviations are used in this manuscript:

Abbreviations
NIPTS National Important Product Traceability System
PSCN Pork supply chain network
MSC Maximum spreading capacity

Pork supply
chain networks

in China

1497



MIC Maximum infection chain
ASF African swine fever
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